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Abstract

The influence of boundary conditions relaxation on two-dimensional panel flutter is studied in the presence of in-plane

loading. The boundary value problem of the panel involves time-dependent boundary conditions that are converted into

autonomous form using a special coordinate transformation. Galerkin’s method is used to discretize the panel partial

differential equation of motion into six nonlinear ordinary differential equations. The influence of boundary conditions

relaxation on the panel modal frequencies and LCO amplitudes in the time and frequency domains is examined using the

windowed short time Fourier transform and wavelet transform. The relaxation and system nonlinearity are found to have

opposite effects on the time evolution of the panel frequency. Depending on the system damping and dynamic pressure,

the panel frequency can increase or decrease with time as the boundary conditions approach the state of simple supports.

Bifurcation diagrams are generated by taking the relaxation parameter, dynamic pressure, and in-plane load as control

parameters. The corresponding largest Lyapunov exponent is also determined. They reveal complex dynamic

characteristics of the panel, including regions of periodic, quasi-periodic, and chaotic motions.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It has been observed that apparently identical aircraft can exhibit different dynamic characteristics under the same

flight conditions. This difference owes its origin to the stochastic nature of structural properties and the environment.

That is, the sensitivity of the dynamic system behavior is directly linked to variations in its physical properties. The

physical properties of aeroelastic structures are affected by boundary conditions relaxation and joint uncertainties.

Generally, the main sources of uncertainties of aerospace structures include:
(i)
 randomness in material properties due to variations in material composition;
(ii)
 randomness in structural dimensions due to manufacturing variations and thermal effects;
(iii)
 randomness in boundary conditions due to preload and relaxation variations in mechanical joints;
(iv)
 randomness of external excitations.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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The present work deals with the third source and its mechanisms. There are many factors that affect mechanical

joints and fasteners, such as friction, hardness, finish, and dimensions of all parts, and gasket creep (Bickford, 1990).
Each factor will vary from fastener to fastener and joint to joint because of manufacturing or usage tolerances. A

fastener subjected to vibration will not lose all pre-loads immediately. First there is a slow loss of pre-load caused by

various relaxation mechanisms. Vibration increases relaxation through consequent wear and hammering. After

sufficient pre-load is lost, friction forces drop below a critical level and, if the joint is bolted, the nut actually starts to

back off and shake loose. As relaxation occurs, the joint fails to mimic ideal boundary conditions; instead, the joint’s

properties become time dependent and uncertain.

The present work is motivated by some recent results on the sensitivity and variability of the response of structural

stochasticity [see, for example, Ibrahim (1987) and Manohar and Ibrahim (1999)] and by the recent assessment of joint

uncertainties by Ibrahim and Pettit (2004). These problems are complex in nature because every joint involves different

sources of uncertainty and nonsmooth nonlinear characteristics. For example, the contact forces are not ideally plane

because of manufacturing tolerances. Furthermore, the initial forces will be redistributed nonuniformly in the presence

of lateral loads. This is in addition to the prying load, which induces nonlinear tension in the bolt and nonlinear

compression in the joint. The main problems encountered in the design analysis of bolted joints with parameter

uncertainties include random eigenvalues, response statistics, and probability of failure.

The effect of uncertainty in the boundary conditions combined with the variability of material properties on the

nonlinear panel aeroelastic response was studied by Lindsley et al. (2002a, b). It was shown that the flutter problem of

aeroelastic structures could be handled when random uncertainties are introduced in the structural model. The pinned

and fixed boundary conditions were modelled as limiting cases of rotational springs on the boundary, which possess

zero and infinite stiffness, respectively. Accordingly, rotational spring stiffness was used to parameterize the boundary

conditions. Parametric uncertainty was examined by modelling variability in Young’s modulus and the boundary

condition parameter. The variability in the boundary conditions was restricted to a single value along the plate

boundary edges for each realization. For values of the dynamic pressure in the deterministic limit cycle oscillation

(LCO) range, the variability in the boundary conditions affects the plate deflection in an essentially linear manner.

However, for values of dynamic pressure in the neighborhood of the bifurcation point, the relationship is nonlinear.

Variation in boundary conditions results in a softening effect of the clamped panel, and thus induces an increase in the

amplitude of plate oscillations.

Structural and material uncertainties were also considered in studying the flutter of panels and shells by Liaw and

Yang (1991a, b) and Kuttenkeuler and Ringertz (1998). For example, Liaw and Yang (1991a, b) quantified the effect of

parameter uncertainties on the reduction of the structural reliability and stability boundaries of initially compressed

laminated plates and shells. For buckling analysis, the uncertainties include modulus of elasticity, thickness, and fiber

orientation of individual lamina, as well as geometric imperfections. For flutter analysis, further uncertainties such as

mass density, air density, and in-plane load were also considered. Kuttenkeuler and Ringertz (1998) performed an

optimization study of the onset of flutter, with respect to material and structural uncertainties, both experimentally and

numerically, using finite element analysis and the doublet-lattice method.

A ground vibration test was used by Potter and Lind (2001) to obtain uncertainty models, such as natural frequencies

and their associated variations, which can update analytical models for the purpose of predicting robust flutter speeds.

Different norm approaches were used to formulate uncertainty models that cover the entire range of observed

variations. It was found that the N-norm produces the smallest uncertainty and the least conservative robust flutter

speed. Lind and Brenner (2000) introduced a tool referred to as the ‘‘flutterometer’’ for predicting the onset of flutter

during a flight test. The flutterometer computes a flutter for an analytical model with respect to an uncertainty

description. Brenner (2002a) considered a technique that identifies model parameters and their associated variances

from flight data. Later Prazenica et al. (2003) introduced a technique for estimating uncertainty descriptions based on a

wavelet approach, but relies on the Volterra kernels.

The studies of panel flutter were concentrated on parametric analysis of stability boundaries and the amplitude of

LCO under different boundary conditions. At the same time, it was shown that a panel subjected to a combination of

airflow and in-plane loading experiences a complex range of motions, including static buckling (divergence), quasi-

periodic motion, and chaos in addition to LCO. Dowell (1982) showed that a panel under the combined effect of fluid

flow and in-plane compression exhibits chaotic motion for certain values of some control parameters. Dowell (1984)

observed chaos, via period doubling and intermittency while increasing the compressive in-plane loading. The existence

of multiple attractors and the coexistence of both symmetric and asymmetric LCO were observed by Bolotin et al.

(1998) using a two degree-of-freedom approximation of an elastic panel. They studied the transition between different

stability regions. The stability regions of a simply supported two-dimensional panel subjected to compressive loading

were revisited recently by Epureanu et al. (2004). They used bifurcation diagrams for two control parameters to

determine stability boundaries and Lyapunov exponents. The effect of damping on stability boundaries as well as on
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LCO was considered by Kuo et al. (1972), Bismarck-Nasr and Bones (2000), Bolotin et al. (2002), Pourtakdoust

and Fazelzadeh (2003). Kuo et al. (1972) showed that the edge compression and viscous structural damping would

result in an increase of flutter amplitudes while the aerodynamic damping would cause a reduction in the flutter

amplitude.

Relaxation effects cause time-dependent boundary conditions and depend on the level of structural vibration. In

other words, there are uncertainties in the boundary conditions in addition to a random field due to system parameter

uncertainties. In this case, aeroelastic structures will experience nonstationary time–frequency flutter, which is analyzed

using time–frequency transforms such as spectrographs and wavelet transform. The time–frequency analysis techniques

have recently been used to analyze flight flutter data by Brenner (1997), Johnson et al. (2002), Staszewski and Cooper

(2002), and Yu et al. (2004). Brenner (1997) used time–frequency signal representations to analyze aeroelastic flight

data. Mastroddi and Bettoli (1999) conducted wavelet analysis in the neighborhood of a Hopf bifurcation to capture

the features of transient responses. In the neighborhood of aeroelastic flutter during flight tests, the time scale

decompositions of continuous wavelet transform was used to analyze pre- and post-critical transient behavior of

nonlinear aeroelastic structures. Brenner (2002b) applied the singular-value decomposition to aeroelastic pitch-plunge

wing section models to detect instability and nonlinear dynamics from the time-frequency map.

The present work deals with the nonlinear panel flutter with relaxation in boundary conditions. The conventional

boundary value problem of the panel involves time-dependent boundary conditions, which are converted to an

autonomous form using a special coordinate transformation inspired by the work of Qiao et al. (2000). The present

analysis extends the analysis of Ibrahim et al. (2004) to include six-mode interaction in the presence of boundary

condition relaxation. The dynamic characteristics of the panel and the influence of initial conditions are predicted using

phase plots, FFT plots, bifurcation diagrams of the first return, short time Fourier transform, wavelet transform, and

Lyapunov exponent.
2. Analytical modelling

Consider a two-dimensional panel exposed to supersonic flow as shown in Fig. 1. In order to estimate the work done

by aerodynamic loading, the pressure on the panel is represented by the linear piston theory (Ashley and Zartarian,

1956),

Dp ¼ p� p1 ¼
r1U2

1

M

qw

qx
þ

1

U1

qw

qt

� �
, (1)

where w(x,t) is the panel deflection, which is a function of position, x, and time, t. M ¼ U1=a1 is the Mach number,

UN is the undisturbed gas flow speed, a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gp1=r1

p
is the speed of sound, pN and rN are the undisturbed free gas

stream pressure and density, respectively. p is the pressure of the gas flow at the panel surface, g ¼ Cp=Cv is the ratio of

specific heats at constant pressure, Cp, and volume, Cv.
Fig. 1. Schematic diagram of a two-dimensional panel with boundary conditions relaxation.
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The governing nonlinear equation of motion for the panel is developed using Hamilton’s principle, which yields

(Ibrahim et al., 1990)

mp
q2w

qt2
þD 1þ c

q
qt

� �
q4w

qx4
� Nx0 þ

Eh

2a

Z a

0

qw

qx

� �2

dx

" #
q2w

qx2
þ
r1U2

1

M

qw

qx
þ

1

U1

qw

qt

� �
¼ Dp0, (2)

where mp is the panel mass per unit area, a is the panel length, E is Young’s modulus, h is the plate thickness,

D ¼ Eh3=½12ð1� n2Þ� is the panel stiffness, n is Poisson’s ratio, Dp0 is the gas pressure difference across the panel, Nx0 is

the external in-plane load per unit span-wise length, and c is a linear viscous damping coefficient. Eq. (2) is subject to the

boundary conditions

D
q2wð0; tÞ

qx2
� a1ðtÞ

qwð0; tÞ

qx
¼ 0; wð0; tÞ ¼ 0, (3a,b)

D
q2wða; tÞ

qx2
þ a2ðtÞ

qwða; tÞ

qx
¼ 0; wða; tÞ ¼ 0, (3c,d)

where a1(t) and a2(t) measure the end slopes and represent torsional stiffness parameters such that if a1ðtÞ ¼ a2ðtÞ ¼ 1
the panel is purely clamped–clamped. On the other hand, the panel is simply supported if a1ðtÞ ¼ a2ðtÞ ¼ 0. In real

situations, a1(t) and a2(t) do not assume these limiting cases; instead, they are very large for clamped supports or very

small for simple supports. In the dynamic case the boundary conditions (3a,c) are nonautonomous. In order to convert

these conditions into an autonomous form, we introduce the following transformation of the response coordinate:

wðx; tÞ ¼
x

a

� �2
þ 2g1ðz1; z2Þ

x

a
þ g2ðz1; z2Þ

� �
uðx; tÞ ¼ jðx; z1; z2Þuðx; tÞ, (4)

where the dimensionless parameter ziðtÞ ¼ D=aaiðtÞ, i ¼ 1; 2, represents the ratio of the bending rigidity to the torsional

stiffness of the joints. One may also adopt other alternative of using the original boundary conditions (3) in a

Rayleigh–Ritz formulation of w(x,t) in terms of sine modes. In transformation (4), the functions g1(z1,z2) and g2(z1,z2)

are chosen to render the boundary conditions autonomous for the new coordinate u(x,t). Possible expressions of these

functions are

g1ðz1; z2Þ ¼ �
1þ 4z2

2ð1þ 2z1 þ 2z2Þ
; g2ðz1; z2Þ ¼ �

2z1ð1þ 4z2Þ

1þ 2z1 þ 2z2
. (5)

In this case, boundary conditions (3) become

q2uð0; tÞ

qx2
¼

q2uða; tÞ

qx2
¼ 0 and uð0; tÞ ¼ uða; tÞ ¼ 0. (6)

Introducing the following nondimensional parameters

t ¼ t

ffiffiffiffiffiffiffiffiffiffi
D

mpa4

s
; w̄ ¼

w

h
; x̄ ¼

x

a
; l ¼

r1U2
1a3

MD
; m ¼

r1a

mp

; z ¼
c

a2

ffiffiffiffiffiffi
D

mp

s
; N̄0 ¼ Nx0

a2

D
; ū ¼

u

h
,

p̄0 ¼ Dp0

a4

Dh
; B1 ¼ 6ð1� n2Þ; j̄ ¼ x̄2 þ 2g1ðz1; z2Þx̄þ g2ðz1; z2Þ

� 	
; ẑ ¼

ffiffiffiffiffiffiffiffi
m

M
;

r

Eq. (2) becomes

q2ðj̄ūÞ

qt2
þ 1þ z

q
qt

� �
q4ðj̄ūÞ

qx̄4
� N̄0 þ B1

Z 1

0

qðj̄ūÞ

qx̄

� �2

dx̄

" #
qðj̄ūÞ

qx̄2
þ l

qðj̄ūÞ

qx̄
þ ẑ

ffiffiffi
l
p qðj̄ūÞ

qt
¼ p̄0. (7)

The relaxation process is phenomenologically modelled based on experimental results (Bickford, 1990). In this case, The

torsional stiffness parameters are assumed functions of the number of vibration cycles, n ¼ nðtÞ,

āiðnÞ ¼
aaiðnÞ

D
¼

1

ziðnÞ
, (8)

where the overbar denotes a dimensionless parameter. An explicit analytical expression for the parameters āiðnÞ can

be obtained from experimental records (Bickford, 1990), which reveal a slow drop between an original and

an asymptotic value of the joint stiffness. An appropriate elementary function that emulates this behavior may be
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selected in the form

āðnÞ ¼ āð1Þ þ ½āð0Þ � āð1Þ�
1þ tanh½�kðn� ncÞ�

1þ tanh½knc�

� �
, (9)

where the subscript i has been dropped, and nc is a critical number of cycles, indicating the location of the inflection

point with respect to the origin, n ¼ 0. The parameter k is associated with the slope of the curve at the point, n ¼ nc. The

parameters āð0Þ and āð1Þ are obtained from the experimental curve. The slope parameter k can be found by taking the

derivative of Eq. (9) with respect to n, i.e.,

k ¼
qāðnÞ=qnjnc

½āð1Þ � āð0Þ�
½1þ tanh½knc��. (10)

One can write an expression for z(t) by using relations (8) and (10) in the form

zðtÞ ¼ Z0Z1 Z0 � ðZ0 � Z1Þ
1þ tanhð�wðt� tcÞÞ

1þ tanhðwtcÞ

� ��1
, (11)

where Z0 ¼ zð0Þ, Z1 ¼ zð1Þ, w ¼ h$i=2pk, and h$i is the mean value of the response frequency, which can be taken as

the center frequency. The phenomenological representation given by Eq. (11) can be used for any initial preload and

will cause the panel to experience nonstationary behavior.

Galerkin’s method is applied by substituting the general solution ūðx̄; tÞ ¼
PN

n¼1Cnðx̄ÞqnðtÞ into Eq. (7), where qn(t)
are unknown functions to be determined (generalized coordinates), Cnðx̄Þ are the assumed orthonormal mode shapes,

and N is the total number of the basis functions for ūðx̄; tÞ. Multiplying both sides by the corresponding weighting

functions ~uðx̄; tÞ ¼
PN

n¼1Cnðx̄Þ ~qnðtÞ, where ~qnðtÞ are arbitrary functions of time, and integrating both sides with respect

to x̄, the resulting discretized equations are obtained by setting the coefficients of each arbitrary function ~qnðtÞ to zero.

The resulting ordinary differential equations may be written in the form

XN

n¼1

€qnðtÞDnm þ
XN

n¼1

qnðtÞC1ðn;mÞ þ z
XN

n¼1

_qnðtÞC1ðn;mÞ �
XN

n¼1

qnðtÞN̄x0C2ðn;mÞ

� B1

XN

n¼1

qnðtÞC2ðn;mÞ

Z 1

0

XN

n¼1

qkðtÞðj
0ðx̄ÞCkðx̄Þ þ jðx̄ÞC0kðx̄ÞÞ

 !2

dx̄

0
@

1
A

þ l
XN

n¼1

qnðtÞ½D1ðn;mÞ þD2ðn;mÞ� þ ẑ
ffiffiffi
l
p XN

n¼1

_qnðtÞDnm ¼ p̄0D4ðmÞ, ð12Þ

where a dot denotes differentiation with respect to the nondimensional time parameter t, a prime denotes

differentiation with respect to the nondimensional spatial coordinate x̄,

Dnm ¼

Z 1

0

jðx̄ÞCnðx̄ÞCmðx̄Þdx̄,

C1ðn;mÞ ¼ 6

Z 1

0

j00ðx̄ÞC00nðx̄ÞCmðx̄Þdx̄þ 4

Z 1

0

jð3Þðx̄ÞC0nðx̄ÞCmðx̄Þdx̄

þ 4

Z 1

0

j0ðx̄ÞC 3ð Þ
n ðx̄ÞCmðx̄Þdx̄þ

Z 1

0

jð4Þðx̄ÞCnðx̄ÞCmðx̄Þdx̄þ

Z 1

0

jðx̄ÞCð4Þn ðx̄ÞCmðx̄Þdx̄,

C2ðn;mÞ ¼ 6

Z 1

0

j00ðx̄ÞCnðx̄ÞCmðx̄Þdx̄þ 2

Z 1

0

j0ðx̄ÞC0nðx̄ÞCmðx̄Þdx̄þ 6

Z 1

0

jðx̄ÞC00nðx̄ÞCmðx̄Þdx̄,

D1ðn;mÞ ¼

Z 1

0

j0ðx̄ÞCnðx̄ÞCmðx̄Þdx̄; D2ðn;mÞ ¼

Z 1

0

jðx̄ÞC0nðx̄ÞCmðx̄Þdx̄

D4ðmÞ ¼

Z 1

0

Cmðx̄Þdx̄.

The general solution is assumed in the form

ūðx̄; tÞ ¼
XN

n¼1

qnðtÞ sin npx̄; (13)
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where N is the total number of modes, qn(t) are the generalized coordinates. It has been established that accurate

solution of the panel flutter can be achieved by using at least six modes [see, e.g., Dowell (1966)]. The inclusion of six

modes results in more tedious analysis and for this reason we introduce the simplification, z1 ¼ z2 ¼ z=2, which makes

the boundary stiffness values to be equal, and gives g1 ¼ �1=2 and g2 ¼ �z. The resulting set of six equations may be

written in matrix form

½MðtÞ�f€qg þ ½Cðz; ẑ; l; tÞ�f_qg þ ½Kðt; N̄0; lÞ�fqg ¼ ½DðtÞ�fq3g þ
X

i¼1;3;5

X6
j¼1;jai

feðtÞqiq
2
j g

þ
X

i

Xiajak

j

X
k

ffðtÞqiqjqkg þ fPðtÞg, ð14Þ

where ½MðtÞ� is time–dependent mass matrix, ½Cðz; ẑ; l; tÞ� is the damping matrix, which depends on the viscous

damping ratio z, mass parameter, ẑ, and relaxation parameter, z(t). ½Kðt; N̄0; lÞ� is the stiffness matrix, ½DðtÞ� is the

coefficient matrix of cubic terms, and fPðtÞg is the pressure vector, whose elements are nonzero only for odd modes. The

structure of these matrices is given in the appendix. The complete set of expressions for all coefficients of the matrices

and vectors of Eq. (14) is documented in Beloiu (2005).

Eqs. (14) are solved numerically in the time domain for a typical relaxation curve. The resulting solution is given in

terms of the transformed response, ū, or rather in terms of its modal coordinates, qi, i ¼ 1; . . . ; 6. One should estimate

the modal response in terms of its physical generalized coordinate,

w̄ðx̄; tÞ ¼
XN

n¼1

q̂nðtÞ sin npx̄ ¼ j̄ðx̄Þūðx̄; tÞ, (15)

where j̄ ¼ ½x̄2 þ 2g1ðz1; z2Þx̄þ g2ðz1; z2Þ� and gi are given by Eq. (5). The relationship between the physical coordinates

q̂nðtÞ and the generalized transformed coordinates qn(t) is

w̄ðx̄; tÞ ¼
XN

n¼1

q̂nðtÞ sin npx̄ ¼ x̄2 þ 2g1ðzÞx̄þ g2ðzÞ
� 	XN

n¼1

qnðtÞ sin npx̄. (16)

Multiplying both sides of Eq. (16) by sin mpx̄; m ¼ 1; 2; . . . ; 6, and integrating both sides

Z 1

0

XN

n¼1

q̂nðtÞ sin npx̄ sin mpx̄

" #
dx̄ ¼

Z 1

0

ðx̄2 þ 2g1ðzÞx̄þ g2ðzÞÞ
XN

n¼1

qnðtÞ sin npx̄ sin mpx̄

" #
dx̄

gives the desired relation between the coordinates:

q̂1

q̂3

q̂5

8><
>:

9>=
>; ¼

T11 T13 T15

T31 T33 T35

T51 T53 T55

2
64

3
75

q1

q3

q5

8><
>:

9>=
>; and

q̂2

q̂4

q̂6

8><
>:

9>=
>; ¼

T22 T24 T26

T42 T44 T46

T62 T64 T66

2
64

3
75

q2

q4

q6

8><
>:

9>=
>;, (17)

where

T11 ¼ �
3þ p2ð1þ 6zÞ

6p2
; T22 ¼ �

3þ 4p2ð1þ 6zÞ

24p2
; T33 ¼ �

1þ 3p2ð1þ 6zÞ

18p2
,

T44 ¼ �
3þ 16p2ð1þ 6zÞ

96p2
; T55 ¼ �

3þ 25p2ð1þ 6zÞ

150p2
; T66 ¼ �

1þ 12p2ð1þ 6zÞ

72p2
,

T13 ¼ T31 ¼
3

8p2
; T15 ¼ T51 ¼

5

72p2
; T24 ¼ T42 ¼

4

9p2
,

T26 ¼ T62 ¼
3

32p2
; T35 ¼ T53 ¼

15

32p2
; T46 ¼ T64 ¼

12

25p2
. ð18Þ

The next section presents the stability analysis and response characteristics under different values of dynamic pressure

and relaxation parameter.
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3. Linear analysis

The stability analysis is carried out by estimating the natural frequencies of the six modes in the absence of system

nonlinearities and by setting the nonhomogeneous term in Eqs. (14) to zero. The dependence of the real and imaginary

components of the eigenvalues on the dynamic pressure in shown in Figs. 2(a) and (b) for three different values of the

relaxation parameter (z ¼ 0:001, 0.1, and 1), damping parameter, z ¼ 0:0, mass parameter ẑ ¼ 0:1, and static axial load

parameter N̄0 ¼ 0. It is seen that the real parts are zero up to a critical value of the dynamic pressure, depending on the

value of the relaxation parameter, z, above which one becomes negative and the other positive indicating the occurrence

of panel instability (flutter). Note that the value z ¼ 0:0 corresponds to a clamped–clamped panel, while z ¼ 1

corresponds to simple supports. The dependence of the components of the first and second eigenvalues on the

relaxation parameter, z, is shown in Fig. 3 for three different values of dynamic pressure, l ¼ 400, 450, and 500. It has

seen that the eigenvalues posses negative real parts up to a critical value of relaxation parameter, above which one

eigenvalue has a positive real part indicating the occurrence of flutter.

Figs. 4 and 5 show the boundaries of panel further in terms of the critical value of aerodynamic pressure, lcr, and the

relaxation parameter, z. These figures depict the influence of the in-plane load, N̄0, and damping ratio, z, respectively.
As expected, the compression in-plane loading results in a reduction of the critical flutter speed. The clamped panel

(z51) requires more in-plane compression load to reach in flutter speed. With reference to Fig. 5, for all values of

relaxation parameter, the damping is nonbeneficial as it increases from very small values up to a critical value, above

which it becomes beneficial, depending on the value of the relaxation parameter. Fig. 6 shows the dependence of flutter

speed on the damping parameter, z. For a given relaxation parameter, there is a critical damping ratio, zcr, above which

the damping becomes beneficial and the critical speed increases with the damping. The value of zcr is shown by a small

circle on each curve and is determined by setting dl=dz ¼ 0. The locus of these points is shown by the dash–dotted
Fig. 2. Dependence of real and imaginary parts of the panel natural frequency on dynamic pressure for z ¼ 0, ẑ ¼ 0:1, N̄0 ¼ 0: (a) real

parts; (b) imaginary parts. —, z ¼ 0:001; . . . . . . ; z ¼ 0:1; dddddd; z ¼ 1.

Fig. 3. Dependence of real and imaginary parts of the first and second natural frequencies on relaxation parameter z for z ¼ 0, ẑ ¼ 0:1,
N̄0 ¼ 0: (a) real parts; (b) imaginary parts. —, l ¼ 400, y, l ¼ 450, ddd; l ¼ 500.



ARTICLE IN PRESS

Fig. 4. Boundaries of panel flutter on the plane for different values of in-plane load and for ẑ ¼ 0:1, z ¼ 0:0001.

Fig. 5. Boundaries of panel flutter for different values of damping factor showing the reversal effect of damping for ẑ ¼ 0:1, N̄0 ¼ 0.
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curve. This curve separates two regions such that zozcr the damping is detrimental and results in a reduction of the

flutter speed, i.e., lcr decreases with damping until damping reaches the critical value zcr. As z4zcr the damping results

in a monotonic increase of lcr.
4. Nonlinear analysis

4.1. Bifurcation analysis

The complete set of Eqs. (14) is solved numerically using the MATLABr variable solver ode15 with relative error

tolerance of 10�6 and absolute error tolerance of 10�9. The numerical solution is carried out for a given damping
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Fig. 6. Boundaries of panel flutter on the l� z plane for different values of relaxation parameter, z, and for N̄0 ¼ 0:0; ẑ ¼ 0:1. Dashed

curve indicates the critical damping ratio that separate between stabilizing and destabilizing damping effects.

Fig. 7. Bifurcation diagram showing the regions of different panel regimes for damping parameter z ¼ 0:0001 and different values of

relaxation parameter. (I) Statically stable, (II) static buckling (divergence), (III) LCO, and (IV) multi-period oscillations and chaos.
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parameter, z, and for different values of in-plane load, N̄0, dynamic pressure, l, and relaxation parameter, z. In order to

avoid the influence of transient motion, only the last portion of the steady–state time history is taken to estimate the

state of the panel. Depending on the system parameters and dynamic pressure the panel may exhibit different regimes

such as (I) statically stable, (II) static buckling (divergence), (III) limit cycle oscillations, and (IV) multi-period

oscillations and chaos. Fig. 7 shows these four regimes on the plane of dynamic pressure, l, versus in-plane load,

�N̄0=p, for three different values of relaxation parameter z ¼ 0:001, 0.1, and 1, in addition to the case of simply

supported panel. The two values of in-plane loads �N̄0=p ¼ 1 and 4 represent the Euler buckling loads of simply

supported and clamped panels, respectively. It is seen that as the relaxation parameter increases (panel approaches

simply supported case) the regions (III) of LCO and (IV) multi-period oscillations/chaos expand. The dynamics of the

panels along lines A and B shown in Fig. 7 will be examined later.

Fig. 8 shows the dependence of LCO amplitude on dynamic pressure for zero in-plane loading and different discrete

values of the relaxation parameter z. Note that, depending on the value of the relaxation parameter, there is a critical

value of dynamic pressure at which LCO begins in the form of supercritical bifurcation. The relaxation results in

moving the bifurcation point to lower values of dynamic pressure. Under compression in-plane loading, N̄0 ¼ �3p2
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and under low values of dynamic pressure the panel experiences static buckling as shown in Fig. 9. As the dynamic

pressure increases the panel enters a stable state until the dynamic pressure reaches the critical value, lcr, above which

the panel exhibits LCO. A three-dimensional diagram demonstrating the time evolution of LCO amplitude and their

dependence on the dynamic pressure is shown in Fig. 10 for zero in-plane loading and same parameters as in the

previous figures.

Under the relaxation curve shown in Fig. 11(a), the time history record of the total deflection at x=a ¼ 0:75 is shown

in Fig. 11(b) for in-plane compression loading, N̄0 ¼ �5:8p2, and dynamic pressure, l ¼ 200. Over the whole time

domain, the panel experiences two different regimes of oscillations, namely the growing amplitude LCO, and chaotic

oscillations. Fig. 12 shows the time history records of the panel deflection for two-, four-, and six-mode interactions.

The purpose of this figure is to show that six-mode expansion provides satisfactory convergence. It is seen that two-

mode expansion provides over estimate of the panel deflection. The difference between four and six mode expansion is

very small and this supports the early claim of six-mode convergence (Dowell, 1982) for the equations of motion with

constant coefficients.

Chaotic flutter is usually detected by estimating the largest value of the Lyapunov exponent. Lyapunov exponent

measures the rate at which nearby trajectories converge or diverge, and are numerically calculated using the algorithm

of Wolf et al. (1985). Eqs. (14) may be rewritten in terms of a set of first-order differential equations in the form

_x ¼ f ðx; tÞ, (19)

where x ¼ fq; _qgT is the state-space vector, where T denotes transpose and f describes the nonlinear behavior of the

system. Let x�ðt; x0Þ be the reference solution of system (19), where x0 is the vector of initial conditions. In order to find

the variation of trajectories in the neighborhood of the reference trajectory x�ðtÞ, at each time step tk we introduce the

corresponding linearized equation

_y ¼ Fðx�ðtkÞÞy, (20)
Fig. 8. Bifurcation diagram for different values of relaxation parameter for z ¼ 0:0001, ẑ ¼ 0:1, p̄0 ¼ 0, and N̄0 ¼ 0.

Fig. 9. Bifurcation diagram for different values of relaxation parameter for z ¼ 0:0001, ẑ ¼ 0:1, p̄0 ¼ 0, and N̄0 ¼ �3p2.
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Fig. 10. Three-dimensional plots of amplitude time evolutions and their dependence on dynamic pressure for z ¼ 0:0001, ẑ ¼ 0:1,
p̄0 ¼ 0:0, and N̄0 ¼ 0.

Fig. 11. (a) Relaxation of boundary conditions and (b) time history record of panel deflection at x=a ¼ 0:75, for z ¼ 0:0001, p̄0 ¼ 0,

ẑ ¼ 0:1, N̄0 ¼ �5:8p2, and l ¼ 200.
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where Fðx�ðtkÞÞ is the n� n Jacobian matrix of the function f evaluated at the reference solution x�ðtkÞ. The jth

Lyapunov exponent can be obtained as an average increment of variation vector yjðtÞ during the test time Dt:

lj ¼
1

KDt

XK

k¼1

ln
kyjðt; tkÞk

kyjð0; tkÞk
, (21)

where k � k denotes vector norm and K is the number of integrations of Eqs. (19) and (20) over successive time intervals

Dt. In the present study, Lyapunov exponents are estimated using a nondimensional time increment Dt ¼ 0:0001. The
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Fig. 12. (a) Relaxation of boundary conditions and time history records of the panel deflection showing convergence of the numerical

results as the number of modes increases, (b) two-mode interaction, (c) four-mode interaction, and (d) six-mode interaction.

z ¼ 0:0001, ẑ ¼ 0:1, p̄0 ¼ 0, N̄0 ¼ �6p2, and l ¼ 200.

Fig. 13. Bifurcation diagram and the corresponding largest Lyapunov exponent for p̄0 ¼ 0, N̄0 ¼ �5:8p2, z ¼ 0:0001, ẑ ¼ 0:1, and
l ¼ 200.
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computation starts after t ¼ 100 and continues up to t ¼ 1000. Fig. 13 shows some regions of relaxation parameter

over which the Lyapunov exponent is positive implying the existence of chaotic flutter. Note that extreme positive

values of Lyapunov exponent are found for period-n flutter regimes.

The bifurcation diagram shown in Fig. 13 is obtained by plotting the first return points of the panel amplitude for in-

plane load parameter N̄0 ¼ �5:8p2, damping factor z ¼ 0:0001, static pressure p̄0 ¼ 0, mass ratio parameter ẑ ¼ 0:1,
and dynamic pressure l ¼ 200. The relaxation parameter varies between z ¼ 0:0025 and z ¼ 1 with an increment of

Dz ¼ 0:0025. It is seen that for relatively small values of relaxation parameter, zo0:105, the panel experiences

symmetric LCO with increasing amplitude as the relaxation parameter increases from the absolute clamped case, z ¼ 0.

The figure may be classified into the following regimes:

0:001pzp0:0925 period-one, symmetric

0:0925ozp0:1025 period-one, asymmetric

0:1025ozp0:1700 Chaos

0:1700ozp0:1850 period-two, mixture of symmetric and asymmetric
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0:1850ozp0:2625 period-one, symmetric

z ¼ 0:2650 period-five, symmetric

0:2650ozp0:2850 period-one, symmetric

0:2850ozp0:3775 period-one, two, and three, symmetric and asymmetric

z ¼ 0:3800 period-eight, symmetric

0:3800ozp0:3925 period-one and two, symmetric

z ¼ 0:3950 period-seven, symmetric

0:3950ozp0:4025 period-one, symmetric

z ¼ 0:4050 period-four, symmetric

0:4050ozp0:4825 period-one, asymmetric and asymmetric

0:4825ozp0:4950 Chaos

0:4950ozp0:5075 period-doubling, asymmetric

0:5075ozp0:6700 Chaos

0:6700ozp0:7275 period-four and seven, symmetric and asymmetric

0:7275ozp0:7325 Chaos

0:7325ozp0:7375 period-six, asymmetric

0:7375ozp0:8925 Chaos

0:8925ozp1 period-three, symmetric.

For selected values of relaxation parameter, the phase plots are shown in Fig. 14. The corresponding FFT plots are

shown in Fig. 15 and reveal n spikes for those period-n regimes and continuous spectrum for the chaotic motion.

Fig. 16 shows the bifurcation diagram and the corresponding Lyapunov exponent for l ¼ 250 and N0 ¼ �6p2. The
switching from symmetric to asymmetric LCO is more visible over the region 0:15ozo0:37. After a window of

symmetric LCO, the motion becomes chaotic ðz40:6325Þ with the increasing of Lyapunov exponent as the relaxation
Fig. 14. Phase plots for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1, N̄0 ¼ �5:8p2, and l ¼ 200 corresponding to Fig. 13 for: (a) z ¼ 0:05;
(b) z ¼ 0:1375; (c) z ¼ 0:265; (d) z ¼ 0:38; (e) z ¼ 0:4075; (f) z ¼ 0:5025; (g) z ¼ 0:71; (h) z ¼ 0:8; (e) z ¼ 1.
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Fig. 15. FFT plots for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1, N̄0 ¼ �5:8p2, and l ¼ 200 corresponding to Fig. 13 for: (a) z ¼ 0:05;
(b) z ¼ 0:1375; (c) z ¼ 0:265; (d) z ¼ 0:38; (e) z ¼ 0:4075; (f) z ¼ 0:5025; (g) z ¼ 0:71; (h) z ¼ 0:8; (e) z ¼ 1.

Fig. 16. Bifurcation diagram of the first return and largest Lyapunov exponent for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1, N̄0 ¼ �6p2, and
l ¼ 250.
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parameter increases. Switching between symmetric and asymmetric LCO, together with cascades of quasi-periodic

motion, and chaotic flutter with windows of periodicity make the panel behavior very complex.

Figs. 13 and 16 reveal only a partial view of the route to chaotic flutter during relaxation. To have a global picture

over the parametric space of dynamic pressure and relaxation parameter for given values of in-plane load and

relaxation parameter, the boundaries of chaotic flutter are shown in Fig. 17 for two values of N̄0 and two values of z.
The dynamic pressure varies from l ¼ 100 to 300 with a step size Dl ¼ 5, and relaxation parameter varies from z ¼ 0 to

z ¼ 1 with step size Dz ¼ 0:05 so that each map is represented by 41� 22 ¼ 902 points. Lyapunov exponent is

computed for each set of parameters. A positive Lyapunov exponent indicates chaotic flutter, which is labeled by a

black dot. If all exponents are negative, the panel equilibrium position is stable. If the largest Lyapunov exponent is

zero the panel experiences a stable limit cycle. Both negative and zero Lyapunov exponents are labeled by a blank space.

Fig. 17(a) shows chaos boundaries for N̄0 ¼ �6p2 and small damping ratio, z ¼ 0:0001. The motion is regular for

zo0:1. The relaxation process increases the chaos occurrence but not monotonically; instead, a complex pattern is

observed. A higher in-plane load enlarges the chaos boundaries as shown in Fig. 17(c); however, the switching

of windows with regular and chaotic motions is still visible. By maintaining the same in-plane load and increasing

the damping ratio to z ¼ 0:001, the chaos boundaries are reduced considerably, especially for lower z, as shown in

Figs. 17(b) and (d).

With reference to the path line A at N̄0 ¼ �6p2 shown in Fig. 7, we consider the panel dynamic behavior in terms of

the bifurcation diagram and Lyapunov exponent, shown in Fig. 18 for relaxation parameter z ¼ 1. The aerodynamic

pressure, l, is taken as the control parameter. A similar analysis is found in Epureanu et al. (2004) for a simply

supported panel without structural damping. The dynamic pressure varies between l ¼ 100 and l ¼ 300 with a step

increment of Dl ¼ 0:25. The bifurcation diagram begins with the buckled state of the panel up to l ¼ 109. The chaotic

motion over the region 109:5olo152:5 is followed by a region of multi-period oscillations up to l ¼ 173. Another

window with chaotic motion is found over the range 173olp192, followed by a wide window with period three

motion. Increasing the aerodynamic pressure, the motion is chaotic but the chaos intensity decreases as suggested by the

decreasing value of Lyapunov exponent. For l4288, the panel experiences LCO with increasing amplitude. Fig. 19

depicts the bifurcation diagram and corresponding Lyapunov exponent for the same path A, but with relaxation

parameter z ¼ 0:1. As a distinct feature, it is observed that the motion is more sensitive to the change of control

parameter over the dynamic pressure range 120:5plp156. With the reference to the corresponding Lyapunov

exponent, the panel motion exhibits a cascade of alternating chaotic and periodic oscillations. The character of the

motion is changed abruptly over a small increment of l.
Fig. 17. Chaos boundaries for z ¼ 1, ẑ ¼ 0:1, p̄0 ¼ 0: (a) N̄0 ¼ �6p2, z ¼ 0:0001; (b) N̄0 ¼ �6p2, z ¼ 0:001; (c) N̄0 ¼ �6:8p2,
z ¼ 0:0001; (d) N̄0 ¼ �6:8p2, z ¼ 0:001.
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Fig. 18. Bifurcation diagram of the first return and largest Lyapunov exponent along the path line A of Fig. 7, for z ¼ 0:0001, p̄0 ¼ 0,

ẑ ¼ 0:1, N̄0 ¼ �6p2, and z ¼ 1.

Fig. 19. Bifurcation diagram of the first return and largest Lyapunov exponent along the path line A of Fig. 7 for z ¼ 0:0001, p̄0 ¼ 0,

ẑ ¼ 0:1, N̄0 ¼ �6p2, and z ¼ 0:1.

D.M. Beloiu et al. / Journal of Fluids and Structures 21 (2005) 743–767758
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Fig. 20. Bifurcation diagram of the first return and Lyapunov exponent along the path line B of Fig. 7 for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1,
l ¼ 140, and z ¼ 1.
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With reference to the path line B at l ¼ 140 of Fig. 7, we consider the dynamic behavior of the panel by varying the

in-plane load N0. The bifurcation diagram illustrated in Fig. 20 is determined for relaxation parameter, z ¼ 1. It is seen

that the panel is stable for small in-plane load up to N̄0 ¼ 3:3, above which it experiences LCO over the range

3:3oN̄0o3:45. At N̄0 ¼ 3:45 the panel experiences secondary bifurcation with symmetric period-3 oscillations.

Increasing the in-plane load, the motion switches between asymmetric and symmetric multi-harmonic oscillations.

Further increase of the in-plane loading results in a chaotic motion with three windows of periodicity:

4:22oN̄0o4:39; 4:77oN̄0o4:96, and 5:5oN̄0o5:87.
For the same set of parameters, the response may be different depending on initial conditions. This is true not only

for the chaotic motion but also for the periodic oscillations. Fig. 21 shows phase portraits for four different sets of

parameters. Each phase portrait is drawn for two different initial conditions (1) q1ðt ¼ 0Þ ¼ 0:1, qiðt ¼ 0Þ ¼ 0,

i ¼ 2; . . . ; 6, _qi ¼ 0; i ¼ 1; . . . ; 6, and (2) q1ðt ¼ 0Þ ¼ 1, qiðt ¼ 0Þ ¼ 0, i ¼ 2; . . . ; 6, _qi ¼ 0; i ¼ 1; . . . ; 6, respectively. One

can observe from Figs. 21(a) and (b) that multi-periodic oscillations corresponding to initial condition set (1) and

becomes a period-3 oscillation in the case of initial condition set (2). In both cases, the response is symmetric. For other

sets of parameters two asymmetric solutions coexist as shown in Figs. 21(c) and (d). The panel response follows one of

these solutions, depending on the initial condition. The coexistence of symmetric and asymmetric LCO is better

observed in the bifurcation diagram shown in Fig. 22 for N̄0 ¼ �6p2, and z ¼ 0:1. The response is asymmetric over the

range 233olp237:5 depending on the initial conditions; after that, the response becomes symmetric, independent of

the initial conditions.
4.2. Time–frequency analysis

The ultimate decision on whether the motion is chaotic or not is given by the existence of a positive Lyapunov

exponent. However, the Lyapunov exponent is characterized by a slow convergence and requires long time simulations

and large computation resources. Time limitations may be critical, especially when experimental data is available for a

limited time history record. Therefore, at least for preliminary investigations, the information from the bifurcation

diagram, phase plot and power spectrum is generally sufficient. The relaxation of the boundary conditions results in

time variation of the panel natural frequencies, and thus, the flutter becomes nonstationary. The Fourier transform
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Fig. 21. Phase diagrams for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1, for two sets of initial conditions: (1) q1ðt ¼ 0Þ ¼ 0:1; qiðt ¼ 0Þ ¼ 0; i ¼ 2; . . . ; 6,
_qi ¼ 0; i ¼ 1; . . . ; 6; (2) q1ðt ¼ 0Þ ¼ 1; qiðt ¼ 0Þ ¼ 0; i ¼ 2; . . . ; 6, _qi ¼ 0; i ¼ 1; . . . ; 6. (a) l ¼ 200, N̄0 ¼ �5:8p2, z ¼ 0:265; (b) l ¼ 200,

N̄0 ¼ �5:8p2, z ¼ 0:38; (c) l ¼ 179, N̄0 ¼ �6p2, z ¼ 0:5; (d) l ¼ 270, N̄0 ¼ �6p2, z ¼ 0:5.

Fig. 22. Section of bifurcation diagram of the first return for z ¼ 0:0001, p̄0 ¼ 0, ẑ ¼ 0:1, N̄0 ¼ �6p2, and z ¼ 0:1 for initial

conditions: (1) q1ðt ¼ 0Þ ¼ 0:1; qiðt ¼ 0Þ ¼ 0; i ¼ 2; . . . ; 6, _qi ¼ 0; i ¼ 1; . . . ; 6, and (2) q1ðt ¼ 0Þ ¼ 1; qiðt ¼ 0Þ ¼ 0; i ¼ 2; . . . ; 6,
_qi ¼ 0; i ¼ 1; . . . ; 6.
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does not reveal the time dependency of the frequency of panel oscillations. The present work will adopt two techniques

usually used for nonstationary signal analysis. These are the windowed Fourier transform, known as the spectrogram,

originally developed by Gabor (1946) and the Morlet wavelet transform. Note that both transforms have

time–frequency resolution limitations for the determination of the instantaneous frequencies. The windowed Fourier

transform relies on the selected length of the window. Any special features occurring during short time-scales smaller

than the length of the window, or with smaller frequencies than those contained in the window, are lost and cannot be

captured by the windowed Fourier transform. On the other hand, the wavelet transform has the advantage in that it
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follows the rapid variations of the instantaneous frequencies since it adjusts the length of the window according to the

frequency content of the signal.

For the case of the short time Fourier transform, real and symmetric window gðtÞ ¼ gð�tÞ is translated by t and

modulated by the frequency $,

gt;$ðtÞ ¼ ei$tgðt� tÞ; kgk ¼ 1 and kgt;$k ¼ 1. (22)

The windowed Fourier transform, known also as the short–time Fourier transform, of the panel deflection qiðtÞ is

Sw̄ðt;$Þ ¼
Z 1
�1

w̄ðtÞgðt� tÞe�i$t dt. (23)

In the present work, the Kaiser window function is used. It has the following form:

gðtÞ ¼

I0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðt=TÞ2

q� �
I0ðbÞ

jtjoT ;

0 otherwise;

8>>><
>>>:

(24)

where I0 is the modified Bessel function of order zero and of first kind, b is a parameter that governs the shape of the

window, and T is the signal total time. The spectrogram measures the energy density of the flutter deflection w̄ in the

time–frequency neighborhood of ðt;$Þ given by

PSw̄ðt;$Þ ¼ jSw̄ðt;$Þj2 ¼
Z 1
�1

w̄ðtÞgðt� tÞe�i$t dt











2

. (25)

Figs. 23(a) and (b) show two cases of the FFT plots and spectrograms of the panel total deflection time history

records for (a) l ¼ 700, and z ¼ 0:0001, and (b) l ¼ 700, and z ¼ 0:02, respectively. For low damping, Fig. 23(a) shows

that the panel frequency decreases with time as the panel boundary conditions approach the case of simple supports. On

the other hand, as the damping increases, the panel frequency increases with time. There are two factors competing with

each other, namely, the structural geometric nonlinearity and the relaxation in the boundary conditions. By increasing
Fig. 23. FFT plots and spectrograms for p̄0 ¼ 0, N̄0 ¼ 0, ẑ ¼ 0:1. (a) l ¼ 700, z ¼ 0:0001, (b) l ¼ 700, z ¼ 0:02.
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Fig. 24. (a) Time history, (b) modulus of WT, (c) phase of WT, (d) three-dimensional plot of modulus of WT for z ¼ 0:0001, p̄0 ¼ 0,

ẑ ¼ 0:1, l ¼ 132, N̄0 ¼ �6p2, and z ¼ 1.
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the damping factor, the structural geometric nonlinearity overcomes the influence of relaxation, and the frequency

increases as shown in Fig. 23(b).

Alternatively, we will use the continuous wavelet transform technique to present the time history records as a

two-dimensional function of time and frequency to reveal the wavelet modulus and phase. A wavelet is a function

cðtÞ 2 L2ðRÞ with zero average. A family of time–frequency atoms is obtained by scaling c by s and translating it by t
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Fig. 25. (a) Time history, (b) modulus of WT, (c) phase of WT, (d) three-dimensional plot of modulus of WT for z ¼ 0:0001, p̄0 ¼ 0,

ẑ ¼ 0:1, l ¼ 203:5, N̄0 ¼ �6p2, and z ¼ 0:1.

D.M. Beloiu et al. / Journal of Fluids and Structures 21 (2005) 743–767 763
(Mallat, 1999)

ct;sðtÞ ¼
1ffiffi
s
p c

t� t
s

� �
; kcu;sk ¼ 1. (26)

The wavelet transform (WT) of the signal w̄ 2 L2ðRÞ at time t and scale s is

Ww̄ðt; sÞ ¼ hw̄;cu;si ¼

Z 1
�1

w̄ðtÞ
1ffiffi
s
p c�

t� t
s

� �
dt. (27)



ARTICLE IN PRESS
D.M. Beloiu et al. / Journal of Fluids and Structures 21 (2005) 743–767764
The mother wavelet for the Morlet is given by the following function:

cðtÞ ¼ p�1=4eio0jtje�jtj
2=2. (28)

The modulus of the wavelet transform is defined as

jW w̄
cðt; sÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe½W w̄

cðt; sÞ�Þ
2
þ ðIm½W w̄

cðt; sÞ�Þ
2

q
, (29)

and the phase is

fðt; sÞ ¼ tan�1
Im½W w̄

cðt; sÞ�

Re½W w̄
cðt; sÞ�

 !
. (30)

The square of the modulus jW w̄
cðt; sÞj

2 represents the energy density distribution of the signal over the time-scale plane,

ðt; sÞ. On the other hand, the phase measures the relative position of the signal and its analyzing wavelet. The graphical

representation of the WT modulus in time-scale plane is called scalogram. Fig. 24 shows the time history, scalogram,

and wavelet phase for fixed parameters l ¼ 132, N̄0 ¼ �6p2, and z ¼ 1. The scalogram shown in Fig. 24(b) illustrates

a large spectrum of frequencies randomly distributed in time. According to Newland (1999a, b), the absolute

phase is not a useful indicator because it depends on wavelet location. However, the rate of change of phase with time in

the same frequency band is an interesting parameter because it is constant when the signal is harmonic of fixed

frequency and phase. Fig. 24(c) shows the projection of phase on the frequency–time plane and one can see the

evolution of phase with time does not maintain a constant value. A better visualization of time-frequency evolution of

the wavelet modulus is illustrated in the three-dimensional plot (Fig. 24(d)). Similarly, Fig. 25 shows the time history,

wavelet modulus and wavelet phase for fixed parameters l ¼ 203:5, N̄0 ¼ �6p2, and z ¼ 0:1. The wavelet scalogram

shows a band of frequencies varying about a dominant component of o� ¼ 20 dimensionless frequency. In addition,

intermittent higher frequency components randomly distributed in time are observed. Although the time history shows

a certain degree of repeatability, the motion is still chaotic. Compared to the Lyapunov exponent, the wavelet transform

is suitable for a short time domain analysis. However, the wavelet analysis cannot provide a quantitative tool to

measure chaos.
5. Conclusions

The nonlinear flutter of a two-dimensional panel exposed to supersonic gas flow involving six-mode interaction is

studied in the presence of nonideal boundary conditions. The deterministic study includes stability analysis in terms

of dynamic pressure, relaxation parameter, damping ratio, and in-plane loading. For in-plane loading below the critical

buckling value, the panel experiences LCO above a critical aerodynamic pressure governed by the relaxation parameter.

For compressive in-plane loads, the panel experiences periodic, quasi-periodic and chaotic oscillations, depending

on the values of dynamic pressure, relaxation parameter and damping ratios. Bifurcation diagrams of the first return

and the associated largest Lyapunov exponent are estimated by taking the dynamic pressure or the relaxation para-

meter or the in-plane loading as control parameters. The chaos regions represented by the largest positive Lyapunov

exponent were found to be reduced for a small relaxation parameter. The initial conditions were found to affect

the behavior of the panel flutter in the periodicity and symmetry of oscillations. The time–frequency analysis of the

panel flutter was estimated using the techniques of the spectrogram and the Morlet wavelet transform. The importance

of these transforms is to reveal the degree of nonstationarity of panel flutter in terms of frequency time variations and

nonlinear behavior.
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Appendix

This appendix gives the matrices of Eq. (14) and samples of their elements, namely:

MðtÞ ¼

1 0 m13 0 m15 0

0 1 0 m24 0 m26

m31 0 1 0 m35 0

0 m42 0 1 0 m46

m51 0 m53 0 1 0

0 m52 0 m64 0 1

2
6666666664

3
7777777775
; m13ðtÞ ¼ �

9

4½3þ p2ð1þ 6zðtÞÞ�
,

C ¼

zb11 þ ẑ
ffiffiffi
l
p

0 zb12 þ ẑb13
ffiffiffi
l
p

0 zb14 þ ẑb15
ffiffiffi
l
p

0

0 zb21 þ ẑ
ffiffiffi
l
p

0 zb22 þ ẑb23

ffiffiffi
l
p

0 zb24 þ ẑb25
ffiffiffi
l
p

zb31 þ ẑb32
ffiffiffi
l
p

0 zb33 þ ẑ
ffiffiffi
l
p

0 zb34 þ ẑb35
ffiffiffi
l
p

0

0 zb41 þ ẑb42
ffiffiffi
l
p

0 zb43 þ ẑ
ffiffiffi
l
p

0 zb44 þ ẑb45
ffiffiffi
l
p

zb51 þ ẑb52
ffiffiffi
l
p

0 zb53 þ ẑb54
ffiffiffi
l
p

0 zb55 þ ẑ
ffiffiffi
l
p

0

0 zb61 þ ẑb62
ffiffiffi
l
p

0 zb63 þ ẑb64

ffiffiffi
l
p

0 zb65 þ ẑ
ffiffiffi
l
p

2
6666666664

3
7777777775
,

b11ðtÞ ¼
p4½51þ p2ð1þ 6zðtÞÞ�
3þ p2ð1þ 6zðtÞÞ

,

K ¼

c11N̄0 þ c12 c13lþ c14 c15N̄0 þ c16 c17lþ c18 c19N̄0 þ c110 c111lþ c112

c21lþ c22 c23N̄0 þ c24 c25lþ c26 c27N̄0 þ c28 c29lþ c210 c211N̄0 þ c212

c31N̄0 þ c32 c33lþ c34 c35N̄0 þ c36 c37lþ c38 c39N̄0 þ c310 c311lþ c312

c41lþ c42 c43N̄0 þ c44 c45lþ c46 c47N̄0 þ c48 c49lþ c410 c411N̄0 þ c412

c51N̄0 þ c52 c53lþ c54 c55N̄0 þ c56 c57lþ c58 c59N̄0 þ c510 c511lþ c512

c61lþ c62 c63N̄0 þ c64 c65lþ c66 c67N̄0 þ c68 c69lþ c610 c611N̄0 þ c612

2
6666666664

3
7777777775
,

c13 ¼ �
16ð26þ 9p2zÞ

9ð3þ p2ð1þ 6zÞÞ
,

D ¼

d11 0 d13 0 d15 0

0 d22 0 d24 0 d26

d31 0 d33 0 d35 0

0 d42 0 d44 0 d46

d51 0 d53 0 d55 0

0 d62 0 d64 0 d66

2
6666666664

3
7777777775
,

d11ðtÞ ¼
1

60
½�15þ 10p2ð1þ 3zðtÞÞ þ p4ð1þ 10zðtÞ þ 30z2ðtÞÞ�B1,
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feqiq
2
j g ¼

e11q1q22 þ e12q1q23 þ e13q1q24 þ e14q1q25 þ e15q1q26 þ e16q3q2
1 þ e17q3q22 þ e18q3q24

e21q2q21 þ e22q2q23 þ e23q2q24 þ e24q2q25 þ e25q2q26 þ e26q4q2
1 þ e27q4q22 þ e28q4q23

e31q1q22 þ e32q1q23 þ e33q1q24 þ e34q1q25 þ e35q1q26 þ e36q3q2
1 þ e37q3q22 þ e38q3q24

e41q2q2
1 þ e42q2q23 þ e43q2q24 þ e44q2q25 þ e45q2q26 þ e46q4q21 þ e47q4q22 þ e48q4q23

e51q1q2
2 þ e52q1q23 þ e53q1q24 þ e54q1q25 þ e55q1q26 þ e56q3q21 þ e57q3q22 þ e58q3q24

e61q2q21 þ e62q2q23 þ e63q2q24 þ e64q2q25 þ e65q2q26 þ e66q4q2
1 þ e67q4q22 þ e68q4q23

8>>>>>>>>>>>><
>>>>>>>>>>>>:
þe19q3q25 þ e110q3q26 þ e111q5q21 þ e112q5q2

2 þ e113q5q23 þ e114q5q24 þ e115q5q26

þe29q4q25 þ e210q4q26 þ e211q6q21 þ e212q6q2
2 þ e213q6q23 þ e214q5q24 þ e215q6q25

þe39q3q25 þ e310q3q26 þ e311q5q21 þ e312q5q2
2 þ e313q5q23 þ e314q5q24 þ e315q5q26

þe49q4q25 þ e410q4q26 þ e411q6q21 þ e412q6q2
2 þ e413q6q23 þ e414q6q24 þ e415q6q25

þe59q3q25 þ e510q3q26 þ e511q5q21 þ e512q5q22 þ e513q5q23 þ e514q5q24 þ e515q5q2
6

þe69q4q25 þ e610q4q26 þ e611q6q21 þ e612q6q22 þ e613q6q23 þ e614q6q24 þ e615q6q2
5

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

e11ðtÞ ¼
1

240
½�15þ 40p2ð1þ 3zðtÞÞ þ 16p4ð1þ 10zðtÞ þ 30z2ðtÞÞ�B1,

ffqiqjqkg ¼

f 11q1q2q4 þ f 12q1q2q6 þ f 13q1q3q5 þ f 14q1q4q6 þ f 15q2q3q4

f 21q1q2q3 þ f 22q1q3q4 þ f 23q1q2q5 þ f 24q2q3q5 þ f 25q1q4q5

f 31q1q2q4 þ f 32q1q2q6 þ f 33q1q3q5 þ f 34q1q4q6 þ f 35q2q3q4

f 41q1q2q3 þ f 42q1q3q4 þ f 43q1q2q5 þ f 44q2q3q5 þ f 45q1q4q5

f 51q1q2q4 þ f 52q1q2q6 þ f 53q1q3q5 þ f 54q1q4q6 þ f 55q2q3q4

f 61q1q2q3 þ f 62q1q3q4 þ f 63q1q2q5 þ f 64q2q3q5 þ f 65q1q4q5

8>>>>>>>>>>><
>>>>>>>>>>>:
þf 16q2q3q6 þ f 17q2q4q5 þ f 18q2q5q6 þ f 19q3q4q6 þ f 110q4q5q6

þf 26q2q4q6 þ f 27q3q4q5 þ f 28q1q3q6 þ f 29q3q5q6 þ f 210q1q5q6

þf 36q2q3q6 þ f 37q2q4q5 þ f 38q2q5q6 þ f 39q3q4q6 þ f 310q4q5q6

þf 46q2q4q6 þ f 47q3q4q5 þ f 48q1q3q6 þ f 49q3q5q6 þ f 410q1q5q6

þf 56q2q3q6 þ f 57q2q4q5 þ f 58q2q5q6 þ f 59q3q4q6 þ f 510q4q5q6

þf 66q2q4q6 þ f 67q3q4q5 þ f 68q1q3q6 þ f 69q3q5q6 þ f 610q1q5q6

9>>>>>>>>>>>=
>>>>>>>>>>>;

,

f 11ðtÞ ¼ �
16

27
ð22þ 15p2zðtÞÞB1; fPðtÞg ¼

2p̄0=pa11

0

3p̄0=2pa33

0

5p̄0=3pa55

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; a11ðtÞ ¼ �

1

12
1þ

3

p2
þ 6zðtÞ

� �
.

The complete set of coefficients mij ; bij ; cij ; dij ; eij ; f ij , and, aii is given in Beloiu (2005).
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